Montana Regional Coalbed Methane Ground - Water Monitoring Program

John Wheaton
Elizabeth Meredith
Andy Bobst

Montana Bureau of Mines and Geology

Lessons from 40 years of coal hydrogeology in Montana:

1. Coal beds as aquifers in Montana
2. Monitored impacts (and lack of impacts) to quantity of water
3. Predictive tools: Monitoring data and computer Modeling

MBMG publishes a report each year

 that includes description of data and interpretations available on-lineAll data are public and available to you at : http:///mbmggwic.mtech.edu/

CBM wells during 2009
Montana:
Producing: 885
4,591 ac-ft water
Wyoming: adjacent to MT
Producing: 2,115
13,477 ac-ft water
(77,940 ac-ft for all wells in WY)

Likely that MT holds about 10% of the gas

Powder River Basin, Montana
Cross Section along MT / WY Stateline

West
East

0
10
20
30
40
50 miles

1. Coal as aquifers in Montana

Canyon Coal

Spring for livestock

Vertical exaggeration $53 x$

TRADITIONAL CBM WELL CONSTRUCTION

GROUND WATER FLOW DIRECTION
GROUND WATER PRESSURE

- - STARTING GROUND WATER PRESSURE

Relationship between CBM drawdown and impacted well discharge

Relationship between CBM drawdown and impacted well discharge

Relationship between CBM drawdown and impacted well discharge

Relationship between CBM drawdown and impacted well discharge

2. Reglonal Monitoring Programe

Data collection
Annual interpretation

EIS predicted production from an individual CBM well in gallons per minute (GPM):

$$
\left.y=14.661 e^{\wedge}(-0.0242 x) ; \text { U.S. BLM, 2003 }\right)
$$

The actual production (solid line) falls below the EIS predicted production for the first 6 years of production. After 6 years, the production is greater than anticipated. The difference between the predicted and actual production is the amount of water anticipated but never produced.
(Montana portion of the Powder River Basin; data from the MT BOGC web site).

The range of production from individual wells varies greatly. The $90^{\text {th }}$ percentile encompasses the production predicted by the EIS.

CBM Water Production

R. 39 E.
R. 40 E .
R. 41 E.

CBM Gas Production

Landowner Monitoring (no CBM impact here)

Parish Place Spring

Irv Alderman and Terry Punt

CBM - related drawdown in Canyon Coal Dedicated Monitoring Wells \& 48 hr Shut-in tests on CBM Wells 20 ft drawdown: 1-1.5 miles outside fields

Maximum Observed Drawdown from CBM in the
 Powder River Basin

After 10 Years of Production

* Maximum Observed
- - Thies Curve for Maximum Observed

We have drawdown, But what about recovery.

Individual well examples

Mining \& CBM Impacts: Anderson - Dietz Coal Near State Line on the Western Side of the CX Field

Coalbed Methane drawdown and recover

Drawdown in the Dietz coal (WR-38) due to coal mine operations then by coalbed methane operations.

3. Predictive Tools

Apply monitoring lessons from other similar settings (we just

Moocting

Combinations, ef beoth

From Wheaton and Metesh, 2002

Canyon (north well field)

Anderson Coal in well field

Edge of PRB Near recharge 75% in 5 years

Modeled and Observed Drawdown from CBM in the Powder River Basin

Conclusions

- After 10 years of CBM production at the CX Field the 20' drawdown contour extends up to 1.5 miles from the field.
- Recovery in areas where CBM wells have been shut-in, with 73-82\% recovery over 5-7 years.
- Coals appear to function as confined aquifers, with little measurable drawdown in adjacent aquifers.

Conclusions

- Monitoring Program results show the actual extent of impacts.
- Modeling provides a valuable predictive tool.

