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EXECUTIVE SUMMARY
WHAT IS THE MONTANA 
CLIMATE ASSESSMENT?
The Montana Climate Assessment (MCA) is an effort to 
synthesize, evaluate, and share credible and relevant scientific 
information about climate change in Montana with the citizens 
of the State. The motivation for the MCA arose from citizens 
and organizations in Montana who have expressed interest in 
receiving timely and pertinent information about climate change, 
including information about historical variability, past trends, and 
projections of future impacts as they relate to topics of economic 
concern. This first assessment reports on climate trends and their 
consequences for three of Montana’s vital sectors: water, forests, 
and agriculture. We consider the MCA to be a sustained effort. 
We plan to regularly incorporate new scientific information, cover 
other topics important to the people of Montana, and address 
the needs of the state. 
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The process to develop the first MCA was 
driven by stakeholder input and informed by 
the best-available science. Insights regarding 
topics to cover were developed from 
questionnaires, conversations, and listening 
sessions held across the state. A team of 
researchers, educators, and stakeholders used 
that feedback to select the topics covered.

The Montana Institute on Ecosystems, a 
statewide center based at both Montana 
State University and University of Montana, 
has taken on the responsibility of organizing 
the MCA. The 2017 MCA is the result of 
two years of work by university faculty 
and students, state and federal agency 
researchers, non-profit organizations, resource 
managers, and citizens from across Montana.

The assessment begins with an analysis 
of Montana’s recent climate trends and 
how climate is projected to change in the 
future (Chapter 2). This information is used 
throughout the assessment to explain the 
key impacts of climate change observed in 
recent decades and projected in the future. 
Discussion of climate change impacts on 
Montana’s water (Chapter 3), forests (Chapter 
4), and agriculture (Chapter 5) are presented 
next. The assessment concludes with an 
analysis of major knowledge gaps—and thus 
areas for future research—related to climate 
change and its impacts on the three sectors 
covered herein (Chapter 6). 

MONTANA’S 
CLIMATE
Understanding current climate change and 
projecting future climate trends is of vital 
importance, both for our economy and our 
well-being. The Climate chapter serves 
as a foundation for the MCA, providing 
information on present-day climate as well 
as climate terminology, past climate trends, 
and future climate projections. The chapter 
is an introduction to climate science and the 
important processes that determine whether 
climate remains constant or changes.

Climate basics
Climate is driven largely by energy from the 
sun, and the manner in which this incoming 
solar radiation is reflected, absorbed, 
transformed (as in photosynthesis), or re-
radiated (as heat). Each of these processes 
influences climate through changes to 
temperature, the hydrologic cycle, vegetation, 
and atmospheric and ocean circulation 
patterns. Climate change, as defined by 
the US Global Change Research Program 
(USGCRP undated), includes:
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Changes in average weather 
conditions that persist over 
multiple decades or longer. 
Climate change encompasses 
both increases and decreases in 
temperature, as well as shifts in 
precipitation, changing risk of 
certain types of severe weather 
events, and changes to other 
features of the climate system.

Such changes are driven in large part by the 
greenhouse effect, the trapping of greenhouse 
gases in Earth’s atmosphere and consequent 
warming of the planet. The rapid rate of climate 
change since the Industrial Revolution has 
resulted from changes in atmospheric chemistry, 
specifically increases in greenhouse gases due 
to increased combustion of fossil fuels, land-
use change (e.g., deforestation), and fertilizer 
production (Forster et al. 2007). The primary 
greenhouse gases in the Earth’s atmosphere are 
carbon dioxide (CO2), methane (CH4), nitrous 
oxide (N2O), water vapor (H2O), and ozone (O3).

Montana’s unique features
To understand climate change in Montana, 
we must first understand Montana’s unique 
geography. Montana is the fourth largest state in 
the nation and its location within North America 
exposes the state to a mix of diverse weather 
systems that originate from the Pacific Ocean, the 
Arctic, and sometimes subtropical regions. The 
Continental Divide, which has a predominantly 
north-south alignment in Montana, effectively 
splits the state into climatically distinct western 
wet and eastern dry regions with respect to 
moisture from eastward-flowing Pacific Maritime 
air. The state also includes the beginnings of 
three major river basins—the Missouri, Snake/
Columbia, and Saskatchewan—two of which 
encompass almost one-third of the landmass of 
the conterminous United States. Consequently, 
Montana’s climate influences the water supply 
of a large portion of the country, and its water 
supports communities, ecosystems, and 
economies far beyond its borders. 

Our analysis
Montana’s unique geography means that climate 
varies across the state, as it does across the 
nation. Throughout the MCA, we aggregate past 
climate trends and future climate projections 
into seven Montana climate divisions, as shown 
in Figure I. These seven climate divisions 
are a subset of the 344 divisions defined 
by the National Oceanic and Atmospheric 
Administration (NOAA) based on a combination 
of climatic, political, agricultural, and watershed 
boundaries (NOAA undated). 
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To assess Montana’s historical climate, we evaluated temperature and precipitation trends since 
the mid-20th century by using standard statistical methods to analyze records of temperature and 
precipitation. To assess future projected changes to Montana’s climate, we employed an ensemble of 
climate models from the fifth iteration of the Coupled Model Intercomparison Project (CMIP5), and 
utilized a statistically downscaled dataset. 

Major findings
The results of this analysis produced several key messages, some of which are shown below, about 
Montana’s historical and future climate (for a complete list of key messages, see the Climate chapter):

• Annual average temperatures, including daily minimums, maximums, and averages, have risen 
across the state between 1950 and 2015. The increases range between 2.0-3.0°F (1.1-1.7°C) during 
this period (see Figure II). [high agreement, robust evidence] 1 

1	 Throughout	the	MCA,	we	assess	our	confidence	in	the	key	messages	by	considering	a)	the	level	of	agreement	among	experts	with	
relevant	knowledge,	and	b)	the	quality	of	the	evidence.	We	use	these	two	factors	and	the	criteria	described	in	the	National	Climate	
Assessment	to	assign	the	confidence	ratings	expressed	throughout	the	MCA.	See	sidebar	titled	“Expressed	Confidence	in	MCA	Key	
Messages” in the Introduction chapter.

Figure I. Montana’s seven climate divisions.

Montana’s Climate Divisions
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Figure	II.	Trends	in	annual	average	temperature	across	each	climate	division	(Figure	I)	in	Montana.	The	divisions	are	
northwestern	(NW),	southwestern	(SW),	north	central	(NC),	central	(C),	south	central	(SC),	northeastern	(NE),	and	
southeastern	(SE).

MT Climate Division Temperature Trends from 1950–2015

• Despite no historical changes in average 
annual precipitation between 1950 and 2015, 
there have been changes in average seasonal 
precipitation over the same period. Average 
winter precipitation decreased by 0.9 inches 
(2.3 cm), which can largely be attributed to 
natural variability and an increase in El Niño 
events, especially in the western and central 
parts of the state. A significant increase in 
spring precipitation (1.3-2.0 inches [3.3-5.1 
cm]) also occurred during this period for 
the eastern part of the state. [moderate 
agreement, robust evidence]

• Montana is projected to continue to warm 
in all geographic locations, seasons, and 
under all emission scenarios throughout 
the 21st century. By mid century, Montana 
temperatures are projected to increase by 
approximately 4.5-6.0°F (2.5-3.3°C) depending 
on the emission scenario. By the end-of-
century, Montana temperatures are projected 
to increase 5.6-9.8°F (3.1-5.4°C) depending 
on the emission scenario. These state-level 
changes are larger than the average changes 
projected globally and nationally (Figure III). 
[high agreement, robust evidence]
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• Across the state, precipitation is projected to increase in winter, spring, and fall; precipitation is 
projected to decrease in summer. The largest increases are expected to occur during spring in 
the southern part of the state. The largest decreases are expected to occur during summer in the 
central and southern parts of the state. [moderate agreement, moderate evidence]

Table I provides a summary of climate metrics developed under the MCA.

Figure	III.	The	projected	increase	in	annual	average	daily	maximum	temperature	(°F)	for	each	climate	division	in	
Montana	for	the	periods	2049-2069	and	2070-2099	for	(A)	stabilization	(RCP4.5)	and	(B)	business-as-usual	(RCP8.5)	
emission scenarios.

Mid-century End-of-century 
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Table I. Summary of climate metrics.
Climate Metric— Trend and future scenario
Atmospheric CO2 
concentrations

Global atmospheric carbon dioxide concentrations have increased 
over 100 ppm since Montana statehood and are projected to 
increase under both future scenarios considered here.

Average temperature Since 1950, average statewide temperatures have increased by 
0.5°F/decade (0.3°C/decade), with greatest warming in spring; 
projected to increase by 3-7°F (1.7-3.9°C) by mid century, with 
greatest warming in summer and winter and in the southeast.

Maximum	temperatures Maximum temperatures have increased most in spring and are 
projected to increase 3-8°F (1.7-4.4°C) by mid century, with greatest 
increases in August and in the southeast.

Days	above	90°F	(32°C) Extreme heat days are projected to increase by 5-35 additional days 
by mid century, with greatest increases in the northeast and south.

Minimum temperatures Minimum temperatures have increased most in winter and spring 
and are projected to increase 3-7°F (1.7-3.9°C) by mid century, with 
greatest increases in January and in the southeast.

Frost-free days Frost-free days are projected to increase by 24-44 days by mid 
century, particularly in the west.

Average precipitation Statewide precipitation has decreased in winter ( 0.14 inches/
decade [-0.36 cm/decade]) since 1950, but no significant change 
has occurred in annual mean precipitation, probably because of 
very slight increases in spring and fall precipitation. Precipitation is 
projected to increase, primarily in spring (0.2-0.7 inches [0.5-1.8 cm]) 
in the northwest; a slight statewide decrease in summer precipitation 
and increased year-to-year variability of precipitation are projected, 
as well.

Number	of	consecutive	dry	
days

Little projected change, with a maximum increase of 3 days to -3 
days under the most severe scenario by end of the century. However, 
increased variability in precipitation suggests potential for more 
severe droughts, particularly in connection with climate oscillations.

Number	of	consecutive	wet	
days

No substantial change projected.
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IMPACTS TO 
MONTANA’S 
WATER
Water in Montana
Montana depends on an adequate supply 
of clean water for nearly every aspect of 
our economy, including food production, 
hydroelectric power, domestic and industrial 
uses, and sustaining our natural ecosystems. 
The vast majority of water that enters Montana 
comes as rain or snow at higher elevations (MT 
DNRC 2014a, b, c, d; MT DNRC 2015). Although 
some of Montana’s water originates in Wyoming 
or adjacent Canadian provinces, over 80% is 
derived from within state boundaries, hence 
Montana’s designation as a “headwaters state.” 
The major rivers of Montana export more than 
40 million acre-feet of water/yr (4.9x1010 m3/
yr)2 —more than twice the capacity of Flathead 
Lake—with the majority, approximately 60%, 
generated in the Clark Fork and Kootenai river 
basins west of the Continental Divide. 

Groundwater is another large and important 
component of the water cycle in Montana, with 
most groundwater coming from shallow sand or 
gravel aquifers in river floodplains. Groundwater 
resources are critical for water users, but also 
contribute significantly to natural streamflow 
throughout the year. In Montana, much of 
the winter snowfall that accumulates in the 

mountains melts in spring to produce streamflow 
and recharge groundwater aquifers. Projected 
changes in temperature will have large effects 
on how water enters Montana (e.g., as rain or 
snow), how it is distributed among major storage 
pools, and how it moves or changes from one 
component of the water cycle to another.

Our analysis
To best represent the influence of climate 
variations on water resources, the Water chapter 
focuses on eight rivers and their watersheds 
(Figure IV; note that some watersheds—for 
example, that of Poplar River—extend beyond 
the state boundaries). These focal rivers and 
watersheds, chosen across the state’s seven 
NOAA climate divisions,3 include:

• Climate division 1 
—Clark Fork River at Saint Regis 
—Middle Fork of the Flathead River at West  
 Glacier

• Climate division 2—Missouri River at Toston 

• Climate division 3—Marias River near Shelby 

• Climate division 4—Musselshell River at   
 Mosby 

• Climate division 5—Yellowstone River at   
 Billings 

• Climate division 6—Poplar River near Poplar

• Climate division 7—Powder River near Locate

2	 	1	acre-foot	is	325,851	gal	(1233	m3),	enough	water	to	cover	an	acre	of	land	1	ft	(0.3	m)	deep.

3	 	For	more	detail	on	our	focal	rivers	and	watersheds	see	Appendix	3-1	on	the	MCA	website.
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Complex computer models (see Climate chapter) 
provide a method for projecting future climate 
scenarios in Montana. By linking climate models 
to water-cycle models, we generate projections 
about how climate change is likely to influence 
water resources. For the projections in the Water 
chapter, we present results from as many as 31 
climate models that are linked to a water-cycle 
model. We utilize these projections to discuss 
how climate change may affect key components 
of the water cycle, including: 

• Snowpack

• Snowmelt runoff and timing

• Annual streamflow

• Groundwater resources

• Drought

Figure	IV.	The	focal	rivers	for	this	assessment,	including	black	outlines	of	the	seven	climate	divisions	(see	Water	chapter),	
contributing	watersheds	(red),	river	gage	locations	(green),	and	the	Continental	Divide	(dotted).

Selected Focal Watersheds
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Major findings
The results of this analysis produced several key messages, some of which are shown below, 
about how climate change will affect Montana’s water resources (for a complete list of key 
messages, see the Water chapter).

Rising temperatures will reduce snowpack, shift historical patterns of streamflow in Montana, 
and likely result in additional stress on Montana’s water supply, particularly during summer and 
early fall. Key messages associated with these findings follow:

• Montana’s snowpack has declined over the observational record (i.e., since the 1930s) 
in mountains west and east of the Continental Divide; this decline has been most 
pronounced since the 1980s. [high agreement, medium evidence] 

• Warming temperatures over the next century, especially during spring, are likely to reduce 
snowpack at mid and low elevations. [high agreement, robust evidence]

• Historical observations show a shift toward earlier snowmelt and an earlier peak in spring 
runoff in the Mountain West (including Montana). Projections suggest that these patterns 
are very likely to continue into the future as temperatures increase. [high agreement, 
robust evidence] 

• Earlier onset of snowmelt and spring runoff will reduce late-summer water availability in 
snowmelt-dominated watersheds. [high agreement, robust evidence]

• Groundwater demand will likely increase as elevated temperatures and changing seasonal 
availability of traditional surface-water sources (e.g., dry stock water ponds or inability of 
canal systems to deliver water in a timely manner) force water users to seek alternatives. 
[high agreement, medium evidence] 

Rising temperatures will exacerbate persistent drought periods that are a natural part of 
Montana’s climate. Key messages associated with these findings follow:

• Multi-year and decadal-scale droughts have been, and will continue to be, a natural 
feature of Montana’s climate [high agreement, robust evidence]; rising temperatures will 
likely exacerbate drought when and where it occurs. [high agreement, medium evidence]

• Changes in snowpack and runoff timing will likely increase the frequency and duration of 
drought during late summer and early fall. [high agreement, medium evidence]
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IMPACTS TO MONTANA’S FORESTS
Forests in Montana
In the Forest chapter, we interpret how past and projected changes in climate—as described in 
the Climate chapter—may influence Montana forests. There are approximately 23 million acres (9.3 
million ha) of forested land in Montana, and most are publicly owned, in the western part of the state 
and dominated by Douglas-fir, lodgepole pine, and ponderosa pine (Figure V). Forest conditions in 
Montana are varied, and potential impacts from climate change will overlay on existing stresses to 
forests. Ultimately, forest managers will need to consider specific adaptation actions in response to 
current and potential climate changes.

Figure	V.	Existing	forest	cover	type	in	Montana	(Landfire	2012).	Gray	boundaries	delineate	climate	divisions	(see	Figure	I).

Existing Forest Cover Type in Montana 



xxxIV  |  ExECUTIVE SUMMARY

Our analysis
In the face of changing climate, forest managers can best maintain forest health and stable 
product yield by understanding past trends and planning for a range of climate scenarios. The 
analysis in the Forest chapter is based on the climate trends for which we had sufficient data 
and climate projections that represent plausible future scenarios, as described in the Climate 
chapter. It is important to note that current forest conditions will largely determine the potential 
impacts from current and future climate change. Forest conditions vary across land ownership 
types, and many Montana forests are under stress due to past forest management practices. In 
addition, we do not detail potential responses of individual tree species to climate shifts in this 
assessment; instead, we focus on the direct and indirect effects of climate change on forests. We 
point the reader to Chapter 6 in the Northern Region Assessment Program report (Keane et al. 
forthcoming) for species-level information.

Major findings
The direct effects of climate change on forests include increased temperatures and shifts in 
precipitation that together alter humidity, soil moisture, and water stress. Direct effects can be 
beneficial or detrimental to forest growth and survival. The results of this analysis on the direct 
effects of climate change on Montana’s forests produced several key messages, some of which 
are shown below (for a complete list of key messages, see the Forests chapter):

• Increased temperatures will have positive or negative effects on individual trees and forest-
wide processes, depending on local site and stand conditions, but impacts from increased 
extreme heat will be negative. [high agreement, moderate evidence]

• Direct effects of climate change on individual trees will be driven by temperature in energy-
limited forests and moisture in water-limited forests. [high agreement, moderate evidence]

• The speed and magnitude of climate change may mean that increased forest mortality and 
contractions in forest distribution will outpace any gains in forest growth and productivity 
over the long run, leading to a net loss of forested area in Montana. [medium agreement, 
limited evidence]

Table II provides a summary of potential climate-related direct effects to forests. 
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Table II. Summary of potential climate-related direct effects to forests.
Direct effect Possible	impacts Projected net effect
Establishment	and	
regeneration

Positive: Higher CO2 
concentrations and temperatures 
may lead to increased tree 
fecundity 

Negative: Higher temperatures 
and reduced water availability 
could reduce seedling survival

Possible positive or negative effects are 
superimposed on climate oscillations, 
such as the Pacific Decadal Oscillation, 
which can produce decades of cooler 
and wetter conditions that may be 
more favorable for establishment and 
regeneration

Growth and 
productivity

Positive: Increased vegetation 
water use and increased growth 
and productivity as a result of 
longer growing season

Negative: Reduced growth and 
productivity in water limited areas

Possible increased growth and 
productivity concurrent with climate 
oscillations that increase water 
availability, particularly at higher 
elevations and where stand density is 
low; extreme high temperatures would 
have net negative impact, regardless of 
water availability

Mortality Positive: Few opportunities for 
reduced direct climate effects 
on mortality but possibility for 
reduced mortality from indirect 
effects

Negative: Increased acute 
and background mortality 
from increased temperatures 
and indirectly from increased 
disturbance

Increased mortality, although may be 
driven by indirect effects; patterns of 
mortality will be dependent on initial 
stand and local site conditions, but 
more arid regions more susceptible

Range shifts and forest 
distribution

Positive: Potential range 
expansion with warmer 
temperatures and sufficient 
moisture

Negative: Potential range 
contraction where temperature 
is too high or in water-limited 
locations

Possible faster range contraction 
compared to expansion, with net range 
reduction particularly in drier areas; 
no clear direction of elevational shifts; 
responses will be highly species and 
location dependent
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Indirect effects of climate change on forests include disturbance—a key component of forest 
ecology—and may be more important, immediate, and longer lasting than direct effects. As 
with direct effects, indirect effects can compound existing forest conditions and impacts from 
past and future human land-use activities (Moritz and Agudo 2013). 

The results of this analysis on the indirect effects of climate change on Montana’s forests 
produced several key messages, some of which are shown below (for a complete list of key 
messages, see the Forests chapter):

• An increase in fire risk (i.e., probability of occurrence)—including an increase in size and 
possible frequency and/or severity (i.e., tree mortality)—is expected in the coming century 
as a result of a) prolonged fire seasons due to increased temperatures, and b) increased 
fuel loads from past fire suppression. [high agreement, robust evidence] 

• Rising temperatures are likely to increase bark beetle survival [high agreement, strong 
evidence], but climate-induced changes to other insects and forest pathogens are more 
varied and less certain [medium agreement, moderate evidence]

• There may be a reduction in the amount of carbon stored in forests. [low agreement, 
limited evidence]

Table III provides a summary of potential climate-related indirect effects to forests.
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Table III. Summary of potential climate-related indirect effects to forests.
Indirect effect Possible	impacts Projected net effect
Disturbance:	fire Positive: Increased forest heterogeneity 

(long-term, post-burn)

Negative: Decreased forest diversity and 
heterogeneity (immediately post-burn); 
increased social and economic impacts 
from fire; increased release of forest carbon

Increased fire severity resulting 
primarily from warmer weather 
and past fire suppression; 
increased release of forest 
carbon from fire

Disturbance:	
pathogens

Positive: Some pathogen species may 
decline and result in decreased forest 
mortality

Negative: Some pathogens species may 
increase and result in increased forest 
mortality and increased susceptibility to 
beetle attack

Uncertain climate effects on 
pathogens, dependent on 
moisture regimes, pathogen 
species, and host species

Disturbance:	insects Negative: Increased forest mortality; 
reduced forest diversity with shift towards 
non-host tree species

Increased temperatures likely 
to result in increased insect 
disturbance, but dependent 
on elevation, insect species 
and host availability

Soil responses and 
carbon	storage

Positive: Increased organic matter if 
increased productivity; increased nitrogen 
availability

Negative: Decreased organic matter (with 
increased decomposition rates); decreased 
mycorrhizal support; increased soil acidity; 
increased release, or decreased removal, of 
atmospheric CO2

Uncertain climate effects on 
soil responses, but projected 
reductions in soil and forest 
carbon storage
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IMPACTS TO MONTANA’S 
AGRICULTURE
Agriculture in Montana
Agriculture is a key industry in Montana, generating over $5.2 billion in 2014 through the 
sale of agricultural commodities (USDA-NASS 2015). Montana’s large agricultural industry 
consists of both crops and livestock. Montana’s farm and ranchland support a mosaic 
of dryland and irrigated agriculture, commodity and specialty cropland, and native and 
planted rangeland. Although more Montanans live in cities than on farms and ranches, we 
think of Montana as an agricultural state, where the non-forested landscape is dominated by 
livestock and crop production. 

Our analysis
Montana agriculture has always faced volatility, extreme events, and variability across the 
state and these conditions will continue to be the case with projected climate changes in 
Montana. Climate model projections show a warmer Montana in the future, with mixed 
changes in precipitation, more extreme events, and mixed certainty about upcoming 
drought. The Agriculture chapter examines potential impacts of projected climate change 
on commodity crops, livestock, pollinators, disease, pests, and weeds. However, any effort 
at assessing climate impacts on agriculture faces multiple levels of uncertainty, including 
uncertainty that a) accompanies all climate projections, b) is specific to agricultural 
projections, and c) is created by adaptive actions (human interventions) that can mask a 
direct climate signal. Climate impacts on agriculture in other regions of the world can also 
create uncertainty and have a major impact on Montana agriculture by changing commodity 
prices and input costs. Increasing uncertainty due to complex interactions, whether 
through volatility or new and hard-to-predict temperature and moisture trends, can disrupt 
agricultural decision-making and will probably become an even more important direct 
agriculture decision-driver in the years ahead (See Figure VI).

Major findings
The results of this analysis produced several key messages, some of which are shown 
below, about how climate change will affect Montana agriculture (for a complete list of key 
messages, see the Agriculture chapter):
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Factors that Drive Agricultural Decisions in Montana

Figure	VI.	Factors	that	drive	agricultural	decisions	in	Montana.	The	size	of	bubble	and	arrows	qualitatively	represents	the	
relative	importance	of	each	factor’s	influence	on	agricultural	production	decisions.

• Every component of agriculture—from prices to plant pollinators and crop pests—exhibits 
complex relationships to climate, depending on the location, weather variability, and agricultural 
and economic practices and policies (Figure VI). Social and economic resilience to withstand 
and adapt to variable conditions has always been a hallmark of Montana farmers’ and livestock 
producers’ strategies for coping with climate variability. [high agreement, robust evidence] 

• Decreasing mountain snowpack will continue to lead to decreased streamflow and less reliable 
irrigation capacity during the late growing season. Reduced irrigation capacity will have the 
greatest impact on hay, sugar beet, malt barley, market garden, and potato production across the 
state. [high agreement, robust evidence] 
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• Increases in temperature will allow winter annual weeds, such as cheatgrass, to increase in 
distribution and frequency in winter wheat cropland and rangeland. Their spread will result 
in decreased crop yields and forage productivity as well as increased rangeland wildfire 
frequency. [high agreement, medium evidence] 

• Climate change affects global-price-determined commodity agriculture differently than 
it affects non-commodity agriculture. Commodity crops, such as small grains, are more 
directly driven by global markets and agricultural subsidies, whereas non-commodity crops 
tend to be more directly tied to local or specialized non-local markets and local micro-
climates. [high agreement, medium evidence] 

• Diversified cropping systems, including rotation with pulse crops and innovations in tillage 
and cover-cropping, along with other measures to improve soil health, will continue to 
allow adaptation to climate change. [medium agreement, low evidence] 

CONCLUSIONS
The 2017 Montana Climate Assessment focused on three sectors that Montana stakeholders 
identified as important to their lives: water, forests, and agriculture. The MCA found that all 
three of these sectors have experienced impacts from climate change over the last half century. 
In addition to exploring how the past climate has changed and its effects on Montana, the 
MCA explored how future projected climate change would also affect water, forests, and 
agriculture across the state. The overall objective of the MCA is to inform Montanans about the 
state’s changing climate so that they can better plan for the future.
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